

IEC TR 63353

Edition 1.0 2026-02

TECHNICAL REPORT

IIoT applications in power distribution systems management: Architecture and functional requirements

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2026 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat
3, rue de Varembé
CH-1211 Geneva 20
Switzerland

Tel.: +41 22 919 02 11
info@iec.ch
www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	4
1 Scope	6
2 Normative references	6
3 Terms, definitions and abbreviated terms	6
3.1 Terms and definitions	6
3.2 Abbreviated terms	8
4 Reference architecture context and methodology	8
4.1 Overview	8
4.2 Methodology	9
4.3 Stakeholders and concerns	9
5 Reference models	11
5.1 IEC TR 62357-1 Smart Grids Architecture Model	11
5.2 ISO/IEC 30141 IoT Reference Models	12
5.3 IoT RA on the SGAM plane	14
5.4 System architecture	15
6 System components and functions	16
6.1 Cloud tier	16
6.1.1 General	16
6.1.2 Operation and management	18
6.1.3 Resource access & interchange	18
6.1.4 Application and service	19
6.2 Edge tier	20
6.2.1 General	20
6.2.2 Hardware	20
6.2.3 Software	21
6.3 Device tier	22
6.3.1 General	22
6.3.2 Hardware	22
6.3.3 Software	23
6.4 Communication network	23
6.4.1 General	23
6.4.2 Wide Area Network	23
6.4.3 Local Area Network	24
7 PD-IoT applications	24
7.1 General	24
7.2 Low voltage topology identification	24
7.2.1 Description of the use case	24
7.2.2 Diagrams of use case	26
7.2.3 Technical details	27
7.2.4 Step by step analysis of use case	27
7.2.5 Information exchanged	30
7.3 Fault Location, Isolation and Service Restoration	31
7.3.1 Description of the use case	31
7.3.2 Diagrams of use case	35
7.3.3 Technical details	37
7.3.4 Step by step analysis of use case	38

7.3.5	Information exchanged	38
7.4	Real-time analysis of regional line losses	38
7.4.1	Description of the use case	38
7.4.2	Diagrams of use case	41
7.4.3	Technical details	42
7.4.4	Step by step analysis of use case	44
7.4.5	Information exchanged	44
7.5	Switchgear condition monitoring and operational view of connected switchgear feeder	44
7.5.1	Description of the use case	44
7.5.2	Diagrams of use case	46
7.5.3	Technical details	47
7.5.4	Step by step analysis of use case	47
7.5.5	Information exchanged	48
7.6	Supervision of IEDs in substations and switchgears	48
7.6.1	Description of the use case	48
7.6.2	Diagrams of use case	49
7.6.3	Technical details	50
7.6.4	Step by step analysis of use case	51
7.6.5	Information exchanged	51
7.7	Grid monitoring using unified technological addressing of PD-IoT data	52
7.7.1	Description of the use case	52
7.7.2	Diagrams of use case	54
7.7.3	Technical details	55
7.7.4	Step by step analysis of use case	56
Bibliography	59

Figure 1 – SGAM plane	11
Figure 2 – SGAM Model	12
Figure 3 – Entity-based IoT reference model	13
Figure 4 – Domain-based IoT reference model	13
Figure 5 – Relation between entity-based RM and domain-based RM	14
Figure 6 – Domain-based IoT RA mapped on the SGAM plane	15
Figure 7 – PD-IoT system architecture	16
Figure 8 – Cloud tier of PD-IoT	18
Figure 9 – Overview diagram of the asset topology identification for low voltage distribution networks	26
Figure 10 – Fast fault location and isolation	32
Figure 11 – Mixed distribution automation architecture combining distributed and centralised monitoring and control	33
Figure 12 – Overview diagram of the fault location, isolation and service restoration	36
Figure 13 – Communication architecture of the fault location, isolation and service restoration	37
Figure 14 – Illustration of the principle of energy balancing	40
Figure 15 – Communication architecture of real-time line losses analysis	42
Figure 16 – Overview diagram of switchgear condition monitoring and operational view of connected switchgear feeder	46

Figure 17 – Communication architecture of switchgear condition monitoring and operational view of connected switchgear feeder	46
Figure 18 – Overview of supervision of IEDs of substation automation and protection systems.....	50
Figure 19 – Communication architecture of supervision of IEDs in substations and switchgears	50
Figure 20 – Reference PD-IoT architecture for the 7.7 grid monitoring using unified technological addressing of PD-IoT data	54
Figure 21 – Reference architecture of grid monitoring using unified technological addressing of PD-IoT data.....	55

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**IIoT applications in power distribution systems management:
Architecture and functional requirements**

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TR 63353 has been prepared by IEC technical committee 57: Power systems management and associated information exchange. It is a Technical Report.

The text of this Technical Report is based on the following documents:

Draft	Report on voting
57/2848/DTR	57/2881/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

1 Scope

This technical report provides the general architecture and system components for applying the IoT technology in power distribution networks. It describes the system architecture, system components and several typical applications in integration and intelligent management of power distribution networks.

2 Normative references

There are no normative references in this document.

Bibliography

- [1] ISO/IEC 20924:2024, *Internet of Things (IoT) and digital twin - Vocabulary*
- [2] ISO/IEC 17788:2014, *Information technology - Cloud computing - Overview and vocabulary*
- [3] ISO/IEC 23188:2020, *Information technology - Cloud computing - Edge computing landscape*
- [4] ISO/IEC/IEEE 42010, *Systems and software engineering - Architecture description*
- [5] ISO/IEC 30141:2018, *Internet of Things (IoT) - Reference Architecture*
- [6] IEC TR 62357-1, *Power systems management and associated information exchange - Part 1: Reference architecture*
- [7] IEC 60870-5-101, *Telecontrol equipment and systems - Part 5-101: Transmission protocols - Companion standard for basic telecontrol tasks*
- [8] IEC 62351 (all parts), *Power systems management and associated information exchange - Data and communications security*
- [9] IEC 60870-5-104, *Telecontrol equipment and systems - Part 5-104: Transmission protocols - Network access for IEC 60870-5-101 using standard transport profiles*
- [10] IEC 62056 (all parts), *Electricity metering data exchange*
- [11] IEC 61850 (all parts), *Communication networks and systems for power utility automation*
- [12] IEC TR 61850-90-6:2018, *Communication networks and systems for power utility automation - Part 90-6: Use of IEC 61850 for Distribution Automation Systems*
- [13] IEEE 1815, *Standard Profile for Communications with Distributed Energy Resources (DERs) using IEEE Std 1815 [Distributed Network Protocol (DNP3)]*
- [14] IEEE 1815-1, *IEEE Standard for Exchanging Information Between Networks Implementing IEC 61850 and IEEE Std 1815(TM) [Distributed Network Protocol (DNP3)]*
- [15] IEC 61850-8-1, *Communication networks and systems for power utility automation - Part 8-1: Specific communication service mapping (SCSM) - Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3*
- [16] IEC 61850-8-2, *Communication networks and systems for power utility automation - Part 8-2: Specific communication service mapping (SCSM) - Mapping to Extensible Messaging Presence Protocol (XMPP)*
- [17] IEC TS 61850-80-1, *Communication networks and systems for power utility automation - Part 80-1: Guideline to exchanging information from a CDC-based data model using IEC 60870-5-101 or IEC 60870-5-104*
- [18] IEC 61850-7-2, *Communication networks and systems for power utility automation - Part 7-2: Basic information and communication structure - Abstract communication service interface (ACSI)*

- [19] IEC 61850-7-3, *Communication networks and systems for power utility automation – Part 7-3: Basic communication structure - Common data classes*
- [20] IEC TR 61850-90-5, *Communication networks and systems for power utility automation - Part 90-5: Use of IEC 61850 to transmit synchrophasor information according to IEEE C37.118*
- [21] IEC 61850-7-4:2010, *Communication networks and systems for power utility automation - Part 7-4: Basic communication structure - Compatible logical node classes and data object classes*
- [22] IEC 61850-7-420, *Communication networks and systems for power utility automation - Part 7-420: Basic communication structure - Distributed energy resources and distribution automation logical nodes*
- [23] IEC TR 61850-90-3, *Communication networks and systems for power utility automation - Part 90-3: Using IEC 61850 for condition monitoring diagnosis and analysis*
- [24] IEC 62271-3, *High-voltage switchgear and controlgear - Part 3: Digital interfaces based on IEC 61850*
- [25] IEC 62271 (all parts), *High-voltage switchgear and controlgear*
- [26] IEC 61869-9, *Instrument transformers - Part 9: Digital interface for instrument transformers*
- [27] IEC TR 62689-100, *Current and voltage sensors or detectors, to be used for fault passage indication purposes - Part 100: Requirements and proposals for the IEC 61850 series data model extensions to support fault passage indicators applications*
- [28] ISO/IEC 30101, *Information technology - Sensor networks: Sensor network and its interfaces for smart grid system*
- [29] ISO/IEC 30144, *Internet of things (IoT) - Wireless sensor network system supporting electrical power substation*
- [30] IEEE 1366, *IEEE Guide for Electric Power Distribution Reliability Indices*
- [31] IEC 60255 (all parts), *Measuring relays and protection equipment*
- [32] IEC 61000-4-30, *Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods*
- [33] IEC 60870-5 (all parts), *Telecontrol equipment and systems*
- [34] IEC 61968 (all parts), *Application integration at electric utilities - System interfaces for distribution management*
- [35] IEC 61970 (all parts), *Energy management system application program interface (EMS-API)*
- [36] IEC 62325 (all parts), *Framework for energy market communications*
- [37] *Reduction of technical and non-technical losses in distribution networks*, CIRED, 2015 (<http://www.cired.net/files/download/188>)

- [38] IEC 61588, *Precision Clock Synchronization Protocol for Networked Measurement and Control Systems*
- [39] IEC 61968-1:2020, *Application integration at electric utilities - System interfaces for distribution management - Part 1: Interface architecture and general recommendations*
- [40] IEC 61968-3:2021, *Application integration at electric utilities - System interfaces for distribution management - Part 3: Interface for network operations*
- [41] IEC 61968-9:2024, *Enterprise business function interfaces for utility operations - Part 9: Interfaces for meter reading and control*
- [42] IEC 61968-11:2013, *Application integration at electric utilities - System interfaces for distribution management - Part 11: Common information model (CIM) extensions for distribution*
- [43] IEC 61970-301:2020, *Energy management system application program interface (EMS-API) - Part 301: Common information model (CIM) base*
- [44] IEC 61970-302:2024, *Energy management system application program interface (EMS-API) - Part 302: Common information model (CIM) dynamics*
- [45] IEC 62055 (all parts), *Electricity metering - Payment systems*
- [46] ISO/IEC/IEEE 42010, *Systems and software engineering - Architecture description*
- [47] ISO/IEC 20922:2016, *Information technology - Message Queuing Telemetry Transport (MQTT) v3.1.1*
- [48] ISO/IEC 21823-1:2019, *Internet of things (IoT) - Interoperability for internet of things systems — Part 1: Framework*
- [49] ISO/IEC 29161:2016, *Information technology - Data structure - Unique identification for the Internet of Things*
- [50] ISO/IEC 30118-1:2018, *Information technology - Open Connectivity Foundation (OCF) Specification -- Part 1: Core specification*
- [51] ISO/IEC 30118-4:2018, *Information technology - Open Connectivity Foundation (OCF) Specification - Part 4: Resource type specification*
- [52] IEC TS 62351-1:2007, *Power systems management and associated information exchange - Data and communications security - Part 1: Communication network and system security - Introduction to security issues*
- [53] ISO/IEC 30165:2019, *Internet of Things (IoT) - Real-time IoT framework*
- [54] ISO/IEC 30164:2019, *Internet of things (IoT) - Edge Computing*
- [55] ISO/IEC 30160, *Internet of Things (IoT) - Application framework for industrial facility demand response energy management*
- [56] ISO/IEC 30161, *Internet of Things (IoT) - Requirements of IoT data exchange platform for various IoT services*

- [57] ISO/IEC 30162, *Internet of Things (IoT) - Compatibility requirements and model for devices within industrial IoT systems*
 - [58] ISO/IEC 30101:2014, *Information technology - Sensor networks: Sensor network and its interfaces for smart grid system*
 - [59] ISO 15118-3:2015, *Road vehicles - Vehicle to grid communication interface - Part 3: Physical and data link layer requirements*
 - [60] ISO/IEC 12139-1:2009, *Information technology - Telecommunications and information exchange between systems - Powerline communication (PLC) - High speed PLC medium access control (MAC) and physical layer (PHY) - Part 1: General requirements*
-